数と式
$$m, n \ \text{が整数のとき}$$
$$a^0 = 1, \quad a^1 = a, \quad a^m \times a^n = a^{m+n}$$
$$(a + b)^2 = a^2 + 2ab + b^2$$
$$(a - b)^2 = a^2 - 2ab + b^2$$
$$(a + b)(a - b) = a^2 - b^2$$
$$(x + a)(x + b) = x^2 + (a+b)x + ab$$
$$(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$$
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a - b)^2 = a^3 - 3a^2b + 3ab^2 - b^3$$
$$(a + b)(a^2 - ab + b^2) = a^3 + b^3$$
$$(a - b)(a^2 + ab + b^2) = a^3 - b^3$$
$$a^2 + 2ab + b^2 = (a + b)^2$$
$$a^2 - 2ab + b^2 = (a - b)^2$$
$$a^2 - b^2 = (a + b)(a - b)$$
$$acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$$
$$$$
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
$$a \ge 0 \ \text{のとき} \quad |a| = a$$
$$a \lt 0 \ \text{のとき} \quad |a| = -a$$
$$a, b \ \text{を実数とすると}$$
$$|a| \ge 0, |a| = 0 \ \text{となるのは} a = 0 \text{のときにかぎる。}$$
$$|-a| = |a|$$
$$|a|^2 = a^2$$
$$|ab| = |a||b|$$
$$|\frac{a}{b}| = |\frac{a}{b}| \quad \text{ただし,} \ b \ne 0$$
$$a > 0, b > 0 \ \text{のとき}$$
$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
$$\sqrt{a + b + 2\sqrt{ab}} = \sqrt{a} + \sqrt{b}$$
$$\sqrt{a + b - 2\sqrt{ab}} = \sqrt{a} - \sqrt{b} \quad \text{ただし,} \ a > b \ \text{とする。}$$
方程式と不等式
$$a < b \implies a + c < b + c, \quad a -c < b -c$$
$$a < b, c > 0 \implies ac < bc, \quad \frac{a}{c} < \frac{b}{c}$$
$$a < b, c < 0 \implies ac > bc, \quad \frac{a}{c} > \frac{b}{c}$$
$$\implies \ \text{は "ならば" の意味}$$
$$|x| = a \iff x = \pm a$$
$$|x| < a \iff -a < x < a$$
$$|x| > a \iff x < -a \ \text{または} \ a < x$$
$$\text{2次方程式} \ ax^2 + bx + c = 0 \ \text{の解は}$$
$$x = \frac{-b \pm \sqrt{b^2 -4ac}}{2a}$$
$$D > 0 \iff \text{異なる2つの実数解をもつ}$$
$$D = 0 \iff \text{1つの実数解(重解)をもつ}$$
$$D < 0 \iff \text{実数解をもたない}$$
2次関数
$$y = a(x -p)^2 + qのグラフは、$$
$$y = ax^2のグラフを$$
$$x軸の方向にp、y軸の方向にq$$
$$だけ平行移動した放物線である。$$
$$軸は直線y = p、頂点は点(p, q)$$
$$2次関数y = ax^2 + bx + c$$
$$のグラフとx軸の共有点のx座標は、$$
$$2次方程式$$
$$ax^2 + bx + c = 0$$
$$の実数解である。$$
$$2次方程式ax^2 + bx + c + 0が2つの解、\alpha、\betaをもつとき、$$
$$a > 0、\alpha > \betaならば$$
$$ax^2 + bx + c > 0の解はx < \alpha、\beta < x$$
$$ax^2 + bx + c < 0の解は\alpha < x < \beta$$
図形と計量
$$\tan A = \frac{a}{b}$$
$$a = b \tan A$$
$$\sin A = \frac{a}{c}, \cos A = \frac{b}{c}$$
$$a = c \sin A, b = c \cos A$$
$$\tan A = \frac{\sin A}{\cos A}$$
$$\sin^2 A + \cos^2 A = 1$$
$$1 + \tan^2 A = \frac{1}{\cos^2 A}$$
$$\sin(90° - A) = \cos A$$
$$\cos(90° - A) = \sin A$$
$$\tan(90° - A) = \frac{1}{\tan A}$$
$$\sin(180° - \theta) = \sin \theta$$
$$\cos(180° - \theta) = - \cos \theta$$
$$\tan(180° - \theta) = - \tan \theta$$
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
$$Rは\triangle ABCの外接円の半径$$
$$a^2 = b^2 + c^2 - 2bc{\cos A}$$
$$b^2 = c^2 + a^2 - 2ca{\cos B}$$
$$c^2 = a^2 + b^2 - 2ab{\cos C}$$
巻末